Rólunk | Támogatás / Letöltés | Bejelentkezés

EDL HUNGARY_Network services

Cégünk nagy bonyolultságú és nagy kiterjedésű hálózatok tervezésére, telepítésére és karbantartására rendezkedett be, de természetesen 5-10 eszközt tartalmazó hálózatok kiépítésében is segítjük Önt.
Cégünk szakemberei már több mint 10 éves tapasztalattal rendelkeznek IT infrastruktúrák, vezetékes és vezeték nélküli kommunikációs rendszerek területén.

HÁLÓZATI MEGOLDÁSOK - Optikai rendszerek

    Informatikai és távközlési hálózatok optikai kábelezését, optikai hegesztését, csatlakozó szerelést és mérést vállalunk az ország egész területén.

    A jelenlegi legkorszerűbb vezetékes adatátviteli módszer az üvegszál vagy más néven optikai technológia alkalmazása. Üvegszálas hálózat kiépítésére akkor kerül sor, ha különösen nagy elektromágneses hatások érik a vezetékeket vagy nagy távolságokat kell áthidalni. Itt a fényáteresztő anyagból készült optikai szálon tovahaladó fényimpulzusok szállítják a jeleket. Az optikai kábel egy olyan vezeték, amelynek közepén üvegszál fut. Ezt az üvegszálat gondosan kiválasztott anyagú burkolat veszi körül. A különleges anyag tulajdonsága, hogy az ide-oda cikázó fény sohasem tudja elhagyni a kábelt. Ezért a fény a vezeték elején lép be és a végén lép ki belőle. De így is meg kell erősíteni és újra kell rendezni a fényt.

    A legnagyobb áthidalható távolság manapság 80 kilométer , ami lényegesen hosszabb táv a hasonló rendű kábelekhez képest. Az adó, ami lehet LED vagy lézer, elektronikus adatot küld át a kábelen, melyet előzőleg fotonná alakítottak. A fotonok hullámhosszai az 1200-1500-ig terjedő nanométer spektrumban lehetnek.

    Az optikai átviteli rendszer három komponensbol áll: az átviteli közegből (hajszálvékony üveg vagy szilikát), amit egy szilárd fénytörő réteg véd (szintén üveg vagy műanyag), a fényforrásból (LED vagy lézerdióda) és a fényérzékelőből (fotodióda).

    Az átvitel a fénysugár különböző közegek határán történő törésén alapul. A törés mértéke a két közeg tulajdonságaitól függ. Ha a beesési szög elér egy kritikus értéket, akkor a fénysugár már nem lép ki a levegőbe, hanem visszaverődik az üvegbe. A kritikus szögnél nagyobb beesési szöggel érkező sugarak a szálon belül maradnak. Az optikai szálak átviteli sebessége az alkalmazott fénytörési technikától függ, amelynek két módozata ismert: a multimódusú és a monomódusú szál.

    A multimódusú szál esetében rengeteg fénysugár halad ide-oda verődve, különböző szögekben a szálban. A jelenleg kapható multimódusú optikai szálak 1 km-es távolságon 1300 nm hullámhossznál 500 Mbit/s-os, 850 nm hullámhossznál 160 Mbit/s-os átviteli sebességet érnek el.

    Amennyiben a szál átmérője éppen a fény hullámhosszával egyenlő, akkor a szál hullámőrzőként muködik, s a fény visszaverődés nélkül egyenes vonalban terjed, és csak egy módus alakul ki. A monomódusú szálak meghajtása (drága) lézerdiódákat igényel, de ugyanakkor sokkal hatékonyabb, és alkalmasabb nagyobb távolságok áthidalására.

    Az optikai kábelezés sebessége és zavartűrése a ma ismert legjobb adatátviteli megoldássá teszi. Ára igen magas, hiszen egy irányba megy a fény, ezért dupla annyi, egyébként is drága kábelre van szükség, és emiatt elsősorban nagy távolságok áthidalására érdemes alkalmazni. Kis távolságra való alkalmazása is indokolt lehet bizonyos környezetben, például orvosi munkahelyeken, speciális gyártóhelyeken, ipari környezetben, energetikai létesítményekben, kutató laboratóriumokban, valamint nagysebességű rendszereknél.

    Az optikai kábel előnyei, hogy érzéketlen az elektromágneses zavarokra, nincs földpotenciál probléma, és nagy a sávszélessége, valamint erősítés nélkül igen nagy távolságra vihető el a jel vele. És még egy nagy előnye biztonságtechnikai szempontból, hogy nem hallgatható le.

    Az adat továbbításának sebességével nincs gond, csakhogy az adatokat rendezni kell bizonyos távolságonként.

    A kábelen keresztül folyó fényt manapság még át kell alakítani elektron folyammá, hogy azt felerősítsék. A fotonról elektronná, majd elektronról vissza fotonná alakítás nagyon lelassítja a folyamatot. Napjainkban már létezik olyan erősítő, amely nélkülözi a lassú foton, elektron, foton átalakításokat. Ezáltal nemcsak hogy gyorsabb és olcsóbb lesz az optikai kábelek piaca, de egyszerre több frekvenciát is tudnak erősíteni. Ezek után szükségszerű, hogy minél több hullámhosszt tudjanak belepréselni egyetlen kábelbe. Ez az eljárás a DWDM (Dense Wavelength Division Multiplexing - sűrített hullámhossz többszörözés). A többszöröző technológiával a kábel kapacitása a hullámhosszok számával növekszik. Ezek közül egyetlen egy több adatot képes szállítani, mint régebben egyetlen kábel. Képesek vagyunk akár 160 frekvenciát egyszerre elküldeni. Így a befogadóképesség 400 Gbit/s-ra növekedhet. Ezzel a technológiával az optikai kábelt használó társaságoknak nem kell több kábelt lefektetniük, ha sávszélesség növekedést akarnak elérni.

    A telekommunikációs hálózatokban A és B pont között nem egyetlen vonal fut. Ezért szükség van váltókra, amelyek elirányítják az adatokat a végállomás felé. Az IP (Internet Protokoll) megoldást használják jelenleg. Ebben az esetben az adatcsomagok rendelkeznek egy kézbesítési címmel, így a váltó könnyen leolvashatja ezeket. Ezt IP-címnek hívjuk. De ezek a váltók csak elektron folyamokat képesek kezelni. Ha azt akarjuk, hogy az adat A és B pont között minél kevesebb megszakítással, végig optikai kábelen fusson, meg kell oldani a hullámhosszok címzését.

Közvetlen kapcsolat

TEL.:
06-20-395-4964
06-20-449-9738

E-MAIL kapcsolat